Multiobjective optimization using an adaptive weighting scheme
نویسندگان
چکیده
منابع مشابه
Multiobjective optimization using an adaptive weighting scheme
A new Pareto front approximation method is proposed for multiobjective optimization problems with bound constraints. The method employs a hybrid optimization approach using two derivative free direct search techniques, and intends to solve blackbox simulation based multiobjective optimization problems where the analytical form of the objectives is not known and/or the evaluation of the objectiv...
متن کاملAsymmetric Pareto-adaptive Scheme for Multiobjective Optimization
A core challenge ofMultiobjective Evolutionary Algorithms (MOEAs) is to attain evenly distributed Pareto optimal solutions along the Pareto front. In this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme for the identification of well distributed Pareto optimal solutions based on the geometrical characteristics of the Pareto front. The apa scheme applies to problem with symmetr...
متن کاملA gradient-based multiobjective optimization technique using an adaptive weighting method
1. Abstract While various multiobjective optimization methods based on metaheuristic techniques have been proposed, these methods still encounter difficulties when handling many variables, or numerous objectives and constraints. This paper proposes a new aggregative gradient-based multiobjective optimization method for obtaining a Pareto-optimal solution set. In this method, the objective funct...
متن کاملAn Adaptive Scalarization Method in Multiobjective Optimization
This paper presents a new method for the numerical solution of nonlinear multiobjective optimization problems with an arbitrary partial ordering in the objective space induced by a closed pointed convex cone. This algorithm is based on the well-known scalarization approach by Pascoletti and Serafini and adaptively controls the scalarization parameters using new sensitivity results. The computed...
متن کاملAn Efficient Adaptive Optimization Scheme
Adaptive optimization schemes based on stochastic approximation principles such as the Random Directions Kiefer-Wolfowitz (RDKW), the Simultaneous Perturbation Stochastic Approximation (SPSA) and the Adaptive Fine-Tuning (AFT) algorithms possess the serious disadvantage of not guaranteeing efficient transient behaviour due to their requirement for using random or random-like perturbations of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2015
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2015.1048861